Standing out in the field of IgY Immunotechnology

  • Home
    Home A full collection of all the Research Archive entries.
  • Years
    Years Sort entries by year.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Archives
    Archives Contains a list of research entries that were created previously.

Neuroprotection and neuronal dysfunction upon repetitive inhibition of oxidative phosphorylation

Posted by on in 2003
  • Font size: Larger Smaller
  • Hits: 1596
  • Print

 Experimental Neurology, Volume 183, Issue 2 , October 2003, Pages 346-354
R. Hellweg (a)(1), C. A. F. von Arnim (b)(1), M. Büchner (b), R. Huber (b) and M. W. Riepe (b)
(a) Department of Psychiatry, Free University, Berlin, Germany
(b) Department of Neurology, University of Ulm, Ulm, Germany
(1) Contributed equally to this work.
Received 13 June 2002; revised 24 September 2002; accepted 4 February 2003; Available online 25 August 2003.


Repetitive inhibition of oxidative phosphorylation is an established model of neurodegeneration. In contrast, a single mild treatment can be neuroprotective-chemical preconditioning. Repetitive chemical inhibition of oxidative phosphorylation may thus be a tool to study deterioration and improvement of cellular hypoxic tolerance and subsequent differential regulation of cellular responses in the same model. We investigated murine hippocampal function upon repetitive intraperitoneal injections of 3-nitropropionate (3-NP; 20 mg/kg body weight), an inhibitor of mitochondrial complex II. With a 2-day interval of repetitive in vivo treatment with 3-NP, posthypoxic recovery of population spike amplitude was below control. In contrast, even after nine in vivo treatments with 3-NP at 4-day intervals, an almost complete recovery of population spike amplitude was observed. Nerve growth factor (NGF) as assessed by ELISA and expression of -amyloid precursor protein (APP) mRNA increased upon nine treatments at 2-day intervals, but remained at control levels with 4-day intervals. In contrast, brain-derived neurotrophic factor (BDNF) as assessed by ELISA increased with the latter treatment. Expression of mRNA for adenosine-A1 and -A3 receptors and endothelial and neuronal nitric oxide synthase remained at control level for both treatment intervals. We conclude that the time interval between mild, subclinical repetitive inhibition of oxidative phosphorylation determines hippocampal neuronal impairment and integrity and modulates NGF and BDNF differently. Decreased hypoxic tolerance and increased APP expression upon repetitive inhibition of oxidative phosphorylation at short time intervals may thus trigger a vicious cycle and be a cofactor for neuronal dysfunction in cerebral hypoxia and neurodegenerative diseases.

Author Keywords: Hypoxia; Preconditioning; Neuroprotection; Neurodegeneration; Growth factors

Last modified on