Standing out in the field of IgY Immunotechnology

  • Home
    Home A full collection of all the Research Archive entries.
  • Years
    Years Sort entries by year.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Archives
    Archives Contains a list of research entries that were created previously.

Individual variation in biomarkers of health: influence of persistent organic pollutants in Great skuas (Stercorarius skua) breeding at different geographical locations.

Posted by on in 2012
  • Font size: Larger Smaller
  • Hits: 1537
  • Print
Bourgeon SLeat EHMagnusdóttir EFisk ATFurness RWStrøm HHanssen SAPetersen AOlafsdóttir K,Borgå KGabrielsen GWBustnes JO. 2012. Environ Res. 118:31-9. doi: 10.1016/j.envres.2012.08.004. Epub 2012 Aug 24.

Norwegian Institute for Nature Research (NINA), FRAM Centre, Tromsø, Norway. sophie.bourgeon@nina.no

Abstract

Persistent organic pollutants (POPs) have been shown to cause adverse effects on a number of biomarkers of health in birds. POPs may impair immune function and alter the stress response, defined as a suite of behavioral and physiological responses to environmental perturbations. Recent studies have also proposed that POPs can induce oxidative stress. Nevertheless, there is a lack of studies simultaneously assessing the potential damaging effects of POPs on the latter biomarkers. In this study, we examined the contribution of legacy (organochlorines; (OCs)) and emerging (flame retardants; PBDEs) POPs to individual variations in stress levels (feather corticosterone), humoral immunity (plasma immunoglobulin Y levels) and oxidative stress occurring in three breeding colonies of a top predator seabird, the Great skua (Stercorarius skua), distributed from temperate regions to the high Arctic: Shetland (60°N), Iceland (63°N) and Bjørnøya (74°N). Our results demonstrated that plasma concentrations of OCs in Great skuas from Bjørnøya are among the highest in North Atlantic seabirds, with up to 7900 μg/kg (ww) ∑OCs. Yet, a latitudinal gradient in POP levels was observed with all compounds being significantly higher in Bjørnøya than in Iceland and Shetland (on average 4-7 fold higher for OCs and 2.5-4.5 for PBDEs, respectively). Contrary to our predictions, skuas breeding at the least contaminated site (i.e., Shetland) experienced the poorest physiological condition; i.e., the highest levels of stress hormones (25% higher) and oxidative stress (50% higher) and the lowest immunoglobulin levels (15% lower) compared to the two other colonies. Finally, our results failed to point out consistent within-colony relationships between biomarkers of health and POPs. Overall, it is suggested that other ecological factors such as food availability could constrain physiological indicators more than anthropogenic contaminants.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
22921737
[PubMed - indexed for MEDLINE]
Last modified on