Standing out in the field of IgY Immunotechnology

  • Home
    Home A full collection of all the Research Archive entries.
  • Years
    Years Sort entries by year.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Archives
    Archives Contains a list of research entries that were created previously.

Immunomodulation of bivalent Newcastle disease DNA vaccine induced immune response by co-delivery of chicken IFN-γ and IL-4 genes.

Posted by on in 2011
  • Font size: Larger Smaller
  • Hits: 2979
  • Print

Immunology Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.

Abstract

The basic objective of this study was to enumerate whether co-administration of interferon-γ (IFN-γ) and/or interleukin-4 (IL-4) gene along with a bivalent Newcastle disease (ND) DNA vaccine construct could modulate the immune response to the DNA vaccine in chickens. pVIVO2 vector carrying Haemaglutinin-Neuraminidase (HN) and Fusion (F) genes of Newcastle disease virus (NDV) at its two cloning sites was used as a DNA vaccine. The same vector was used to clone the chicken IFN-γ and IL-4 genes at the multiple cloning site-1 separately. In vitro expression of IFN-γ and IL-4 gene constructs was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and that of HN and F genes by indirect fluorescent antibody technique (IFAT) in addition to RT-PCR. The chickens were immunized thrice intramuscularly at 21, 36 and 46 days of age with the bivalent DNA vaccine alone, or in combination with IFN-γ/IL-4 or both cytokine gene constructs. The bivalent DNA vaccine led to increase in both NDV specific antibodies as assessed by enzyme linked immunosorbent assay (ELISA) and haemagglutination inhibition test (HI) and cell mediated immune (CMI) response as assessed by lymphocyte transformation test (LTT) employing MTT assay. Co-administration of the DNA vaccine with IL-4 gene resulted in highest IgY levels while IFN-γ produced highest CMI response. The DNA vaccine alone could afford only 10% protection against challenge infection by velogenic NDV. This protection was increased to 40% when IL-4 gene construct was co-administered with the DNA vaccine. Co-injection of IFN-γ as well as the combination of IFN-γ and IL-4 gene constructs with the DNA vaccine yielded 20% protection. Our study suggests that IL-4 may prove to be more appropriate as a genetic adjuvant than IFN-γ for ND DNA vaccine.

Copyright © 2011 Elsevier B.V. All rights reserved.

PMID:
21820185
[PubMed - in process]
Last modified on