Standing out in the field of IgY Immunotechnology

  • Home
    Home A full collection of all the Research Archive entries.
  • Years
    Years Sort entries by year.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Archives
    Archives Contains a list of research entries that were created previously.

Expression and function of 5-HT4 receptors in the mouse enteric nervous system

Posted by on in 2005
  • Font size: Larger Smaller
  • Hits: 1723
  • Print

 Liu M, Geddis MS, Wen Y, Setlik W, Gershon MD.
Am J Physiol Gastrointest Liver Physiol. 2005 Dec;289(6):G1148-63. Epub 2005 Jul 21
Dept. of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.


The aim of the current study was to identify enteric 5-HT(4) splice variants, locate enteric 5-HT(4) receptors, determine the relationship, if any, of the 5-HT(4) receptor to 5-HT(1P) activity, and to ascertain the function of 5-HT(4) receptors in enteric neurophysiology.

5-HT(4a), 5-HT(4b), 5-HT(4e), and 5-HT(4f) isoforms were found in mouse brain and gut. The ratio of 5-HT(4) expression to that of the neural marker, synaptophysin, was higher in gut than in brain but was similar in small and large intestines. Submucosal 5-HT(4) expression was higher than myenteric. Although transcripts encoding 5-HT(4a) and 5-HT(4b) isoforms were more abundant, those encoding 5-HT(4e) and 5-HT(4f) were myenteric plexus specific. In situ hybridization revealed the presence of transcripts encoding 5-HT(4) receptors in subsets of enteric neurons, interstitial cells of Cajal, and smooth muscle cells.

IgY antibodies to mouse 5-HT(4) receptors were raised, affinity purified, and characterized. Nerve fibers in the circular muscle and the neuropil in ganglia of both plexuses were highly 5-HT(4) immunoreactive, although only a small subset of neurons contained 5-HT(4) immunoreactivity. No 5-HT(4)-immunoreactive nerves were detected in the mucosa. 5-HT and 5-HT(1P) agonists evoked a G protein-mediated long-lasting inward current that was neither mimicked by 5-HT(4) agonists nor blocked by 5-HT(4) antagonists.

In contrast, the 5-HT(4) agonists renzapride and tegaserod increased the amplitudes of nicotinic evoked excitatory postsynaptic currents. Enteric neuronal 5-HT(4) receptors thus are presynaptic and probably exert their prokinetic effects by strengthening excitatory neurotransmission.

Last modified on