Standing out in the field of IgY Immunotechnology

  • Home
    Home A full collection of all the Research Archive entries.
  • Years
    Years Sort entries by year.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Archives
    Archives Contains a list of research entries that were created previously.

Exclusion of polymeric immunoglobulins and selective immunoglobulin Y transport that recognizes its Fc region in avian ovarian follicles.

Posted by on in 2007
  • Font size: Larger Smaller
  • Hits: 1750
  • Print

Kitaguchi K, Osada K, Horio F, Murai A.
Vet Immunol Immunopathol. 2007 Oct 16 [Epub ahead of print]

Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.


In avian species, blood immunoglobulin (Ig) Y, the equivalent to mammalian IgG, is selectively incorporated into ovarian follicles, but other classes, IgA and IgM, are much less abundant in the follicles. Several mammalian Igs, including IgG and IgA, are also incorporated into ovarian follicles when administered to birds. To clarify the Ig structure required for incorporation into ovarian follicles, Ig uptakes were determined after the intravenous injection of chicken and human Igs. Three chicken Igs (cIgY, cIgA and cIgM) and two human IgAs (monomeric hIgA and polymeric hIgA) were labeled with digoxigenin, and their uptakes into quail (Coturnix japonica) egg yolks were determined by ELISA and SDS-PAGE. The uptake of cIgY was the highest among the three cIgs (22% of injected cIgY was recovered from egg yolks). Chicken IgA was efficiently incorporated into egg yolk when it formed a monomeric state. Pentameric IgM was untransportable into egg yolk. We also found that the uptake of monomeric hIgA was much more efficient than that of polymeric hIgA. These results suggest that the retention of the monomeric form contributes to the efficient transport of Igs into ovarian follicles. On the other hand, Ig uptakes among monomeric Igs nevertheless differed; for example, a time-course analysis showed that the rate of monomeric cIgY uptake was approximately eight times faster than that of monomeric hIgA. The injection of cIgY fragments Fc, Fab and F(ab')(2) resulted in the largest uptake of Fc fragment, with the same level as that of cIgY. These results suggest the presence of a selective IgY transport system that recognizes its Fc region in avian ovarian follicles.

Last modified on