Standing out in the field of IgY Immunotechnology

  • Home
    Home A full collection of all the Research Archive entries.
  • Years
    Years Sort entries by year.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Archives
    Archives Contains a list of research entries that were created previously.

Evaluation of protein depletion methods for the analysis of total-, phospho- and glycoproteins in lumbar cerebrospinal fluid

Posted by on in 2005
  • Font size: Larger Smaller
  • Hits: 1645
  • Print

 Ogata Y, Charlesworth MC, Muddiman DC. J
Proteome Res. 2005 May-Jun;4(3):837-45.
Mayo Proteomics Research Center and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.

Abstract

A proper sample preparation, in particular, abundant protein removal is crucial in the characterization of low-abundance proteins including those harboring post-translational modifications. In human cerebrospinal fluid (CSF), approximately 80% of proteins originate from serum, and removal of major proteins is necessary to study brain-derived proteins that are present at low concentrations for successful biomarker and therapeutic target discoveries for neurological disorders.

In this study, phospho- and glycoprotein specific fluorescent stains and mass spectrometry were used to map proteins from CSF on two-dimensional gel electropherograms after immunoaffinity based protein removal. Two protein removal methods were evaluated: batch mode with avian IgY antibody microbeads using spin filters and HPLC multiple affinity removal column. Six abundant proteins were removed from CSF: human serum albumin (HSA), transferrin, IgG, IgA, IgM, and fibrinogen with batch mode, and HSA, transferrin, IgG, IgA, antitrypsin, and haptoglobin with column chromatography. 2D gels were compared after staining for phospho-, glyco- and total proteins. The column format removed the major proteins more effectively and approximately 50% more spots were visualized when compared to the 2D gel of CSF without protein depletion.

After protein depletion, selected phospho- and glycoprotein spots were identified using mass spectrometry in addition to some of the spots that were not visualized previously in nondepleted CSF. Fifty proteins were identified from 66 spots, and among them, 12 proteins (24%) have not been annotated in previously published 2D gels.

Last modified on