Standing out in the field of IgY Immunotechnology

  • Home
    Home A full collection of all the Research Archive entries.
  • Years
    Years Sort entries by year.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Archives
    Archives Contains a list of research entries that were created previously.

Development and characterization of a model system to study amphibian immune responses to iridoviruses.

Posted by on in 2003
  • Font size: Larger Smaller
  • Hits: 1935
  • Print

 Gantress J, Maniero GD, Cohen N, Robert J Virology 2003 Jul 311:254-62


The recent realization that viruses within the family Iridoviridae may contribute to the worldwide decline in amphibians makes it urgent to understand amphibian antiviral immune defenses. We present evidence that establishes the frog Xenopus laevis as an important model with which to study anti-iridovirus immunity. Adults resist high doses of FV3 infection, showing only transitory signs of pathology. By contrast, naturally MHC class-I-deficient tadpoles are highly susceptible to FV3 infection. Monitoring of anti-iridovirus immunity by PCR indicates a preferential localization of FV3 DNA in the kidney, with the inbred MHC homozygous J strain appearing to be more susceptible. Clearance of virus as measured by detection of FV3 DNA and also the disappearance of pathological and behavioral symptoms of infection, acceleration of viral clearance, and detection of IgY anti-FV3 antibodies after a second injection of FV3 are all consistent with the involvement of both cellular and humoral adaptive antiviral immune responses.
Author Address

Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.

Last modified on