Standing out in the field of IgY Immunotechnology

  • Home
    Home A full collection of all the Research Archive entries.
  • Years
    Years Sort entries by year.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Archives
    Archives Contains a list of research entries that were created previously.

An engineered virus as a bright fluorescent tag and scaffold for cargo proteins--capture and transport by gliding microtubules.

Posted by on in 2006
  • Font size: Larger Smaller
  • Hits: 2051
  • Print

Martin BD, Soto CM, Blum AS, Sapsford KE, Whitley JL, Johnson JE, Chatterji A, Ratna BR.
J Nanosci Nanotechnol. 2006 Aug;6(8):2451-60.
Center for Bio/Molecular Science and Engineering, Code 6930, US Naval Research Laboratory, Washington, DC 20375, USA.


We have demonstrated substantial capture and transport of fluorescently-labeled engineered cowpea mosaic virus (CPMV) using Drosophila kinesin-driven microtubules (MTs). The capture occurred through both NeutrAvidin (NA)-biotin and antibody (IgG)-antigen interactions. The MTs were derivatized with rabbit anti-chicken IgG or biotin, and the virus was conjugated with chicken IgG or NA. The CPMV conjugate was introduced into standard MT motility assays via convective flow at concentrations as high as 1.36 nM, and became bound to the MTs in densities as high as one virus per microm of MT length. When the CPMV conjugate was present at 17 pM, the average speed of the MTs bearing the NA-virus was 0.59 +/- 0.08 microm/sec, and that of those bearing IgG-virus was 0.52 +/- 0.15 microm/sec. These speeds are comparable to those of the unladen MTs (0.61 +/- 0.09 microm/sec), the presence of the virus on the MT causing only a small decrease in MT gliding speeds. The fluorescent CPMV appears to be superior to fluorescent polystyrene spheres of the same size, as both a reporter tag and a scaffold for MT-transported cargo proteins, because of its negligible non-specific adsorption and superior brightness. This work is important for the development of sensors based on nanolocomotion and biological recognition, or new strategies for the nanoassembly of biological structures.

Last modified on